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Berry phase 
 
If the Hamiltonian 𝐻 is independent on time, then when the system starts from a non-
degenerated eigenstate 𝜓#(𝑟) 
 𝐻𝜓#(𝑟) = 𝐸#𝜓#(𝑟) 
In time it remains in the same state, picking up a phase factor 

𝜓#(𝑟, 𝑡) = 𝜓#(𝑟)𝑒
-./01ℏ  

 
If we change the parameters of the Hamiltonian very gradually in time, the system remains 
in the same eigenstate assuming that it remains nondegenerated (the energy gap between 
this state and any other states remains finite) 
That is the adabatic princple. 
 
We consider a physical system with a general time-varying Hamiltonian 𝐻(𝑹) that depends 
on time through several parameters (such as magnetic field, electric field, flux, and strain) 
labeled by a  vector 𝑹=(R1, R2, , ....) where 𝑅. = 𝑅.(𝑡). We are interested in the adiabatic 

evolution of the system-the evolution of the system as the parameters R(t) are varried very 
slowly (compared to other energy scales-gaps-in the problem) along a path C in the 
parameter space. For our purposes, C can now be any path, closed or open. We introduce an 
instantaneous orthonormal basis of the instantaneous eigenstates |𝑛(𝑹)⟩ of 𝐻(𝑹) at each 
point 𝑹 obtained by diagonalizing 𝐻(𝑹) at  each value	𝑹:  

𝐻(𝑹)|𝑛(𝑹)⟩ = 𝐸#(𝑹)|𝑛(𝑹)⟩ 

It determines the basic function |𝑛(𝑹)⟩ up to a phase. 

We want to analyze the phase of the wave function of a system prepared in an initial pure 
state |𝑛9𝑹(𝑡):; as we slowly move 𝑹(𝑡) along the path C.  

Per the adiabatic theorem, a system starting in an eigenstate |𝑛9𝑹(0):; will evolve with 
𝐻(𝑹) and hence stay as an instantaneous eigenstate of the Hamiltonian 𝐻9𝑹(𝑡): 
throughout the process.  

Let the phase 𝜃(𝑡)of the state |𝜓(𝑡)⟩ = 𝑒-.>(1)|𝑛9𝑹(𝑡):; 

The time evolution of the system is given by 

𝐻9𝑹(𝑡):|𝜓(𝑡)⟩ = 𝑖ℏ
𝑑
𝑑𝑡 |𝜓

(𝑡)⟩ 

 

𝐸#9𝑹(𝑡):|𝑛9𝑹(𝑡):; = ℏA
𝑑
𝑑𝑡 𝜃

(𝑡)B |𝑛9𝑹(𝑡):; + 𝑖ℏ
𝑑
𝑑𝑡 |𝑛

9𝑹(𝑡):; 
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Taking the scalar product with D𝑛9𝑹(𝑡):| and assuming the state is normalized 

𝐸#9𝑹(𝑡): − 𝑖ℏD𝑛9𝑹(𝑡):|
𝑑
𝑑𝑡 |𝑛

9𝑹(𝑡):; = 	ℏ A
𝑑
𝑑𝑡 𝜃

(𝑡)B 

The solution for the phase 𝜃(𝑡) is 
 

𝜃(𝑡) =
1
	ℏ
G𝐸#9𝑹(𝑡′):𝑑𝑡′
1

I

− 𝑖 GD𝑛9𝑹(𝑡′):|
𝑑
𝑑𝑡′ |𝑛

9𝑹(𝑡′):;𝑑𝑡′
1

I

 

The first part of the phase is the conventional dynamical phase. The negative of the second 
part is called the Berry phase. If we write 

|𝜓(𝑡)⟩ = 𝑒𝑥𝑝L
1
	ℏ
G𝐸#9𝑹(𝑡′):𝑑𝑡′
1

I

M𝑒𝑥𝑝(𝑖𝛾#)|𝑛9𝑹(𝑡):; 

Then the Berry phase is 𝛾# 

𝛾# = 𝑖 GD𝑛9𝑹(𝑡′):|
𝑑
𝑑𝑡′ |𝑛

9𝑹(𝑡′):;𝑑𝑡′
1

I

 

Time can been removed explicitly from the equation- the only thing needed being the 
dependence of the eigenstates on the parameters 𝑅., which are impicitly time depentent. 

𝛾# = 𝑖G D𝑛9𝑹(𝑡′):|
𝑑
𝑑𝑡′ |𝑛

9𝑹(𝑡′):;
𝑑𝑹
𝑑𝑡′ 𝑑𝑡

O = 𝑖 G ⟨𝑛(𝑹)|
Q

1R

I

∇𝑹|𝑛(𝑹)⟩𝑑𝑹 

The Berry phase 𝛾# is real ,because ⟨𝑛(𝑹)|∇𝑹|𝑛(𝑹)⟩ is itself imaginary.  
We can define a vector function called Berry connection, or Berry vector potential: 

𝑨#(𝑹) = 𝑖⟨𝑛(𝑹)|
𝜕
𝜕𝑹 |𝑛

(𝑹)⟩,				𝛾# = G 𝑨#(𝑹)
Q

𝑑𝑹 

The Berry connection 𝑨#(𝑹) is obviously gauge dependent. Under gauge transformation 
|𝑛(𝑹)⟩ → 𝑒.W(𝑹)|𝑛(𝑹)⟩, the Berry connection transforms in the usual way: 

𝑨#(𝑹) → 𝑨#(𝑹) −
𝜕
𝜕𝑹 	𝜁

(𝑹) 
The 𝛾# can not be cancelled by a smart choice of the gauge factor 𝜁(𝑹) from the following 
reason: 
We can consider closed path 𝐶 in parameter space for which, after a long time 𝑇 we return 
to the original parameters:	𝑹(𝑇) = 𝑹(0). For such paths, the fact that the eigenstates basis 
to be singe-valued means that when we return to the original parameter configuration, the 
basis state must be the same |𝑛9𝑹(𝑇):; = |𝑛9𝑹(0):;. Gauge transformations must 
maintain this property, so 
 𝑒.W𝑹(I)|𝑛9𝑹(0):; = 𝑒.W9𝑹(𝑻):|𝑛9𝑹(𝑇):; = 𝑒.W9𝑹(\):|𝑛9𝑹(0):; and hence 𝜁9𝑹(𝑇): −
𝜁9𝑹(0): = 2𝜋𝑚, with 𝑚 an integer. 
 
Let the parameter space three-dimensional. For a closed path, the Berry phase is a gauge-
invariant quantity independent of the specific form of how 𝑹 varies in time. Because 𝐶 is a 
closed path, application of Stokes theorem gives 
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𝛾# = G𝑑𝑺(∇ × ⟨𝑛(𝑹)|∇𝑹|𝑛(𝑹)⟩) = G𝑑𝑆.𝜖.de ∇d⟨𝑛(𝑹)|∇𝒌|𝑛(𝑹)⟩

= G𝑑𝑺(⟨∇𝑛(𝑹)| × |∇𝑛(𝑹)⟩) 

where ⟨∇𝑛(𝑹)| × |∇𝑛(𝑹)⟩ is the Berry curvature (to be precise, 𝐹de = D∇d𝑛(𝑹)h∇e𝑛(𝑹); −
(𝑗 ⟷ 𝑘) is the Berry curvature). We can think of 𝐹de  as a magnetic field in parameter space 
(the curl of the Berry connection) 


