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Landau levels in 2D 
 
For the vector potential one convenient choice is the so-called Landau gauge:  

𝐴(𝑟) = 𝑥𝐵𝑦* 

Which obeys ∇	---⃗ × 𝐴 = 𝐵�̂�. In this gauge the vector potential points in the y direction but 
varies only with the x position. Notice that the magnetic field (and hence all the 
physics) is translationally invariant, but the Hamiltonian is not. 

The Hamiltonian can be written in the Landau gauge as 	

𝐻 =
1
2𝑚 5𝑝78 + :𝑝; + 𝑒𝐵𝑥=

8
> 

Taking advantage of the translation symmetry in the y direction, let us attempt a 
separation of variables by writing the wave function in the form  

𝜓@(𝑥, 𝑦) = 𝑒B@;𝑓@(𝑥) 

This has the advantage that it is an eigenstate of 𝑝;  and hence we can make the 
replacement 𝑝; → ℏ𝑘 in the Hamiltonian. After separating variables we have the 
effective one-dimensional Schrödinger equation  

ℎ@𝑓@(𝑥) = 𝜖@𝑓@(𝑥) 

where  

ℎ@ =
1
2𝑚𝑝78 +

1
2𝑚

(ℏ𝑘 + 𝑒𝐵𝑥)8 

This is simply a one-dimensional displaced harmonic oscillator  

ℎ@ =
1
2𝑚𝑝78 +

1
2𝑚𝜔J

8(𝑥 + 𝑘𝑙L8)8 

whose frequency is the classical cyclotron frequency (𝜔J =
ML
N

) and whose central 
position 𝑋@ = −𝑘𝑙𝐵2  is (somewhat paradoxically) determined by the 𝑦 momentum 
quantum number (𝑙L8 =

ℏ
ML

). Thus for each plane wave chosen for the 𝑦 direction there 
will be an entire family of energy eigenvalues  

𝜖@Q = R𝑛 +
1
2
T ℏ𝜔J 

which depend only on 𝑛 and are completely independent of the y momentum ℏ𝑘. The 
corresponding (unnormalized) eigenfunctions are  
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𝜓Q@(𝑟) =
1
√𝐿

𝑒B@;𝐻Q(𝑥 − 𝑋𝑘)𝑒
W X
8YZ
[ (7W𝑋𝑘)[ 

where 𝐻Q is (as usual for harmonic oscillators) the nth Hermite polynomial (in this 
case displaced to the new central position 𝑋@). 

These harmonic oscillator levels are called Landau levels. Due to the lack of 
dependence of the energy on 𝑘, the degeneracy of each level is enormous. 

We assume periodic boundary conditions in the 𝑦 direction. Because of the vector 
potential, it is impossible to simultaneously have periodic boundary conditions in the 𝑥 
direction. However since the basis wave functions are harmonic oscillator polynomials 
multiplied by strongly converging gaussians, they rapidly vanish for positions away 
from the center position 𝑋@ = −𝑘𝑙𝐵2 . Let us suppose that the sample is rectangular with 
dimensions 𝐿7, 𝐿; and that the left hand edge is at 𝑥 = −𝐿7	and the right hand edge is 
at 𝑥 = 0. Then the values of the wavevector 𝑘 for which the basis state is substantially 
inside the sample run from 𝑘 = 0 to 𝑘 = 𝐿7

𝑙𝐵
2]  . It is clear that the states at the left 

edge and the right edge differ strongly in their 𝑘 values and hence periodic boundary 
conditions are impossible. 

The total number of states in each Landau level is then  

𝑁 =
𝐿𝑦
2𝜋

` 𝑑𝑘 =
𝐿𝑥𝐿𝑦
2𝜋𝑙L8

= 𝑁b

𝐿𝑥
YZ
[]

c
 

where 

𝑁b ≡
𝐵𝐿𝑥𝐿𝑦
Φc

 

is the number of flux quanta penetrating the sample. Thus there is one state per Landau 
level per flux quantum  

Notice that even though the family of allowed wavevectors is only one-dimensional, 
we find that the degeneracy of each Landau level is extensive in the two-dimensional 
area. The reason for this is that the spacing between wave vectors allowed by the 
periodic boundary conditions ∆@= 2𝜋

𝐿;g decreases while the range of allowed wave 

vectors h0, 𝐿7 𝑙𝐵2
] i increases with increasing 𝐿.  

 The width of the harmonic oscillator wave functions in the nth Landau level is of 
order√𝑛𝑙L. This is microscopic compared to the system size, but note that the spacing 
between the centers  
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∆= ∆𝑘𝑙L8 =
2𝜋𝑙L8

𝐿𝑦
 

is vastly smaller (assuming 𝐿; ≫ 𝑙L). Thus the different basis states are strongly 
overlapping (but they are still orthogonal).  

For simplicity we will restrict the remainder of our discussion to the lowest Landau 
level where the (correctly normalized) eigenfunctions in the Landau gauge are 
(dropping the index n = 0 from now on):  

𝜓@(𝑟) =
1

k𝜋X 8g 𝐿𝑙𝐵
𝑒WB@;𝑒

W X
8YZ
[ :7l@YZ

[ =
[

 

and every state has the same energy eigenvalue 𝜖@ =
X
8
	ℏ𝜔J. 

We imagine that the magnetic field (and hence the Landau level splitting) is very large 
so that we can ignore higher Landau levels.  

The expectation value of the current in the 𝑘th basis state is  

〈𝐽〉 = −𝑒
1
𝑚
p𝜓@q:𝑝 + 𝑒𝐴=q𝜓@r 

The 𝑦 component of the current is	

〈𝐽;〉 = −
𝑒

𝑚𝜋X 8g 𝑙𝐵
`𝑑𝑥 𝑒

W X
8YZ
[ :7l@YZ

[ =
[

(ℏ𝑘 + 𝑒𝐵𝑥)𝑒
W X
8YZ
[ :7l@YZ

[ =
[

= −
𝑒𝜔J
𝜋X 8g 𝑙𝐵

`𝑑𝑥 𝑒
W X
YZ
[ :7l@YZ

[ =
[

(𝑥 + 𝑘𝑙L8) 

We see from the integrand that the current density is antisymmetric about the peak of 
the gaussian and hence the total current vanishes. This antisymmetry (positive vertical 
current on the left, negative vertical current on the right) is the remnant of the 
semiclassical circular motion.  

Let us now consider the case of a uniform electric field pointing in the 𝑥 direction and 
giving rise to the potential energy 𝑉(𝑟) = 𝑒𝐸𝑥 

This still has translation symmetry in the 𝑦 direction and so our Landau gauge choice 
is still the most convenient. Again separating variables we see that the solution is 
nearly the same as before, except that the displacement of the harmonic oscillator is 
slightly different. The Hamiltonian becomes  

ℎ@ =
1
2𝑚𝑝78 +

1
2𝑚𝜔J

8(𝑥 + 𝑘𝑙L8)8 + 𝑒𝐸𝑥 
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Completing the square we see that the oscillator is now centered at the new position  

𝑋@ = −𝑘𝑙𝐵2 −
𝑒𝐸
𝑚𝜔𝑐2

 

and the energy eigenvalue is now linearly dependent on the particle’s peak position 𝑋@ 
(and therefore linear in the y momentum)  

𝜖@ =
1
2 	ℏ𝜔𝑐 + 𝑒𝐸𝑋𝑘 +

1
2𝑚𝑣w

2	, 

where �̅� = −𝐸 𝐵g  . Because of the shift in the peak position of the wavefunction, the 
perfect antisymmetry of the current distribution is destroyed and there is a net current  

〈𝐽;〉 = −𝑒𝑣w 

This result can be derived either by explicitly doing the integral for the current or by 
noting that the wave packet group velocity is X

ℏ
y𝜖𝑘
y@
= Mz

𝜖𝑘

y{|
y@

=�̅� independent of the value 
of 𝑘 (since the electric field is a constant in this case, giving rise to a strictly linear 
potential).  

It should be noted that the applied electric field ‘tilts’ the Landau levels in the sense that 
their energy is now linear in position. This means that there are degeneracies between 
different Landau level states because different kinetic energy can compensate different 
potential energy in the electric field. Nevertheless, we have found the exact eigenstates (i.e., 
the stationary states). It is not possible for an electron to decay into one of the other 
degenerate states because they have different canonical momenta. If however disorder or 
phonons are available to break translation symmetry, then these decays become allowed 
and dissipation can appear. The matrix elements for such processes are small if the electric 
field is weak because the degenerate states are widely separated spatially due to the small 
tilt of the Landau levels.  
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