Magnetic monopole

Assume that there is a magnetic monopole with charge.
Similarly to the electric charge, the Gauss’s law (for a closed manifold)

fd§-§ = 4nq,,
The B field is:
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The vector potential V X A=F

The value of 4 is not unique, but they are all connected by a gauge transformation.
For example:
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r(r —2z)
This vector potential has one problem. It is singular at the north pole (z = r). In fact, one
can prove that no matter which gauge one uses, there will always be a singular point.
This singularity is not a physical singularity. All physical observables are smooth and non-
singular functions at this point. Only A (which is not a measurable quantity) shows singular
behavior. In addition, the location of this singularity point is gauge dependent.
For example, using another gauge, which gives the same B field
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This singular at the south pole (z = —r).
Use the first one to describe the south hemisphere and the second one to describe the north
hemisphere:

(—}" X, O) o (}" —X, O)
™ r(r+2) S_qmr(r—z)
At the equator, the vector potential is multivalued (depending on whether we use Ay or As.
Because we know that A is not a physical observable and it is multivalued. As long as they
differ by a gauge transformation, they describe the same physics (same B field).
The gauge transformation between Ay and Ag is:
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At the equator (z = 0)
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Gauge transformation:
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We know ¢ and ¢ + 2m are the same points, therefore
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where n is an integer.

Yy (1) = Y5 (7, )e™?
The magnetic charge is quantized (up till now we have used the ¢ = 1 units)
ch

dm =
24,
For a closed surface enclosing a magnetic monopole, no matter what gauge one uses, the
vector potential must have some singularities.
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If A is a non-singular function on a closed manifold, the magnetic flux through this manifold
must be zero.
To proof this, we cut the manifold into two parts D; and Dy,

The magnetic flux though D,
a$-F=| d§-vxi=¢ di-i
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where C; is the edge of D; , and we used the Stokes’ theorem for nonsingular functions.
The expression is the same for the magnetic flux though D,
Therefore, the total magnetic field flus is

fd§-§=§£ di-/f+§£ dl-A
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The edge of D; and D;; are the same curve but their directions are opposite, therefore

f dS-B=0
The only way to have nonzero magnetic flux here is to have some singular vector potential. If

A is singular, we must use at least two different gauge choice to cover the whole manifold.
If we use A, for D; and A,; for D;;, we get
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Replacing /T, = /TN and /T,, = /TS
fd§-§ =§ dz)-(/f,\,—/fs) = 2qm§ dZ)-V(p =4nq,
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(Going from CGS to S! units B — B/47T )

Another choice of the vector potential, using spherical polar coordinates
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The gauge transformation connecting the two
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leads to the same result.



