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Magnetic monopole 
 
Assume that there is a magnetic monopole with charge. 
Similarly to the electric charge, the Gauss’s law (for a closed manifold) 

!𝑑𝑆 ∙ 𝐵'⃗ = 4𝜋𝑞, 

The 𝐵'⃗  field is: 

𝐵'⃗ = 𝑞,
𝑒.
𝑟0 = 𝑞,

𝑟
𝑟1 = 𝑞,

(𝑥, 𝑦, 𝑧)
(𝑥0 + 𝑦0 + 𝑧9)1/0 

The vector potential ∇ × 𝐴 = 𝐵'⃗  
The value of 𝐴 is not unique, but they are all connected by a gauge transformation. 
For example: 

𝐴 = 𝑞,
(𝑦, −𝑥, 0)
𝑟(𝑟 − 𝑧)  

This vector potential has one problem. It is singular at the north pole (𝑧 = 𝑟). In fact, one 
can prove that no matter which gauge one uses, there will always be a singular point. 
This singularity is not a physical singularity. All physical observables are smooth and non-
singular functions at this point. Only 𝐴 (which is not a measurable quantity) shows singular 
behavior. In addition, the location of this singularity point is gauge dependent. 
For example, using another gauge, which gives the same 𝐵 field 

𝐴 = 𝑞,
(−𝑦, 𝑥, 0)
𝑟(𝑟 + 𝑧)  

This singular at the south pole (𝑧 = −𝑟). 
Use the first one to describe the south hemisphere and the second one to describe the north 
hemisphere: 

𝐴@ = 𝑞,
(−𝑦, 𝑥, 0)
𝑟(𝑟 + 𝑧) 															𝐴B = 𝑞,

(𝑦,−𝑥, 0)
𝑟(𝑟 − 𝑧) 										 

At the equator, the vector potential is multivalued (depending on whether we use 𝐴@ or 𝐴B. 
Because we know that 𝐴 is not a physical observable and it is multivalued. As long as they 
differ by a gauge transformation, they describe the same physics (same 𝐵 field). 
The gauge transformation between 𝐴@ and 𝐴B is: 

𝐴@ = 𝐴B + 2𝑞,
(−𝑦, 𝑥, 0)

(𝑟 − 𝑧)(𝑟 + 𝑧) 

At the equator (𝑧 = 0) 

𝐴@ = 𝐴B + 2𝑞,
(−𝑦, 𝑥, 0)

𝑟0 = 𝐴B + 2𝑞,∇𝜑 

Gauge transformation: 

𝜙 → 𝜙G = 𝜙 −
𝜕Λ(𝑟, 𝑡)
𝜕𝑡  

𝐴 → 𝐴G = 𝐴 + ∇	Λ(𝑟, 𝑡) 
𝜓(𝑟, 𝑡) → 𝜓G(𝑟, 𝑡) = 𝜓(𝑟, 𝑡)𝑒L

MN
ℏ P(.⃗,Q)  

Here  
Λ(𝑟, 𝑡) = 2𝑞,𝜑 

𝜓@(𝑟, 𝑡) = 𝜓B(𝑟, 𝑡)𝑒
LMNℏ P(.⃗,Q) = 𝜓B(𝑟, 𝑡)𝑒

L0MNMRℏ S 
We know 𝜑 and 𝜑 + 2𝜋 are the same points, therefore 
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2𝑞T𝑞,
ℏ = 𝑛 

where  𝑛 is an integer. 
𝜓@(𝑟, 𝑡) = 𝜓B(𝑟, 𝑡)𝑒LVS 

The magnetic charge is quantized (up till now we have used the 𝑐 = 1 units) 

𝑞, =
𝑐ℏ
2𝑞T

𝑛 

For a closed surface enclosing a magnetic monopole, no matter what gauge one uses, the 
vector potential must have some singularities. 
 
If 𝐴 is a non-singular function on a closed manifold, the magnetic flux through this manifold 
must be zero. 
To proof this, we cut the manifold into two parts 𝐷Z and 𝐷ZZ 
The magnetic flux though 𝐷Z 

! 𝑑𝑆 ∙ 𝐵'⃗ =
[\

! 𝑑𝑆 ∙ ∇ × 𝐴 = ] 𝑑𝑙 ∙
_\[\

𝐴 

where 𝐶Z is the edge of 𝐷Z , and we used the Stokes’ theorem for nonsingular functions. 
The expression is the same for the magnetic flux though 𝐷ZZ 
Therefore, the total magnetic field flus is  

!𝑑𝑆 ∙ 𝐵'⃗ =] 𝑑𝑙 ∙
_\

𝐴 + ] 𝑑𝑙 ∙
_\\

𝐴 

The edge of 𝐷Z and 𝐷ZZ are the same curve but their directions are opposite, therefore 

!𝑑𝑆 ∙ 𝐵'⃗ = 0 

The only way to have nonzero magnetic flux here is to have some singular vector potential. If 
𝐴 is singular, we must use at least two different gauge choice to cover the whole manifold. 
If we use 𝐴Z for 𝐷Z and 𝐴ZZ for 𝐷ZZ, we get 

!𝑑𝑆 ∙ 𝐵'⃗ =] 𝑑𝑙 ∙
_\

a𝐴Z − 𝐴ZZb 

Replacing 𝐴Z = 𝐴@ and 𝐴ZZ = 𝐴B 

!𝑑𝑆 ∙ 𝐵'⃗ =] 𝑑𝑙 ∙
_\

a𝐴@ − 𝐴Bb = 2𝑞, ] 𝑑𝑙 ∙ ∇𝜑 =
_\

4𝜋𝑞, 

(Going from CGS to SI units 𝐵'⃗ → 𝐵'⃗
4𝜋c  ) 

 
Another choice of the vector potential, using spherical polar coordinates 
 

𝐴S@ =
𝑞,
𝑟
1 − cos 𝜃
sin 𝜃  

𝐴SB = −
𝑞,
𝑟
1 + cos𝜃
sin 𝜃  

The gauge transformation connecting the two  

𝐴S@ = 𝐴SB +
2𝑞,
𝑟 sin 𝜃 ∂S𝜑 

leads to the same result. 


