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TKKN formula 
 
(Thouless, Kohmoto, Nightingale, den Nijs, 1982) 
 
Starting from the Kubo formula of conductivity based on the linear response theory. We 
consider a Hamiltonian 𝐻 = 𝐻# $𝑘 +

'
ℏ
𝐴*~𝐻#(𝑘) + 𝑗 ∙ 𝐴 = 𝐻#(𝑘) + 𝐻0, where  𝐻#(𝑘) is 

the unperturbed Hamiltonian and 𝐻0 is the perturbation from external field. In the dc limit, 
the conductivity tensor is given by 

𝜎23 = 𝑖ℏ56𝑛8(𝜖:) − 𝑛8(𝜖<)=
:<
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= 𝑖ℏ5𝑛8(𝜖:)
(𝑗2):<(𝑗2)<: − 6𝑗3=:<(𝑗2)<:
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where 𝑛8 is the Fermi distribution function, 𝑗 is the current operator 𝑗2 =
'
ℏ
?@A
?BC

  and 
(𝑗2):< = ⟨𝑢:|𝑗2|𝑢<⟩. Here 𝜖: and |𝑢:⟩ are the eigen-energy and eigen wavefunction of 
unperturbed Hamiltonian 𝐻# . 
 

Since (𝑗2):< = ⟨𝑢:|𝑗2|𝑢<⟩ =
'
H
I𝑢:J
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J𝑢<K =
'
H
(𝜖: − 𝜖<) I

?LM
?BC

J𝑢<K, the formula for Hall 

conductivity can be simplified as 

𝜎NO =
𝑖𝑒>

ℏ 5𝑛8(𝜖:) QI
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:

 

Here the summation over 𝑛 include the integral over the momentum 𝑘. Consider only on 
zero temperature, the formula is rewritten as 

𝜎NO =
𝑖𝑒>
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In which the summation over 𝑛is just for all the occupied band. 
 
In terms of the Berry curvature ℱ:
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